Olestra, Frankenstein fat substitute

Who knew that when Procter and Gamble accidentally created Olestra by attaching up to eight fatty acids to regular table sugar, they had also created a monster? While the molecule tastes and looks like fat to the human eye, in the body its freakishly spiderlike structure can’t be broken down at all, thus, the intestine cannot absorb it for caloric energy.

After a fatty meal, the body doesn’t even really start digesting the triglycerides until they reach the small intestine (although there is a bit done by saliva and stomach fluid) [1].

As fats reach the duodenum, they form into large globules that stimulate secretion of bile from the liver that emulsifies them into tiny globules or droplets [1p716]. A protein called colipase binds to the droplets, which allows various enzymes called lipases secreted by the pancreas to access them more easily [1p779]. Lipases hydrolyze triglycerides freeing a couple of the fatty acids from their glycerol backbone so that both the monoglyceride and fatty acids can be transported by intestinal cells [1p716].

It’s not a perfect system. The hydrolysis is absolutely necessary for absorption, but then those fatty acids and monoglycerides are just made into triglycerides again [1p716]. But in the bloodstream they can be hydrolyzed again to be degraded by beta-oxidation into acetyl CoA for production of ATP or, as witnessed by my love handles, can be stored in adipose tissue [1].

Unlike triglycerides, Olestra would never be broken down or absorbed at all because it is unrecognizable to colipase and lipases. The colipases are particular in binding to droplets, and lipases, like all enzymes, are specific in the way of binding to substrates [1p639].

The “fake fat”, thus, is pooped out as slimy diarrhea and, along with it, fat-soluble nutrients.  Yes, it’s true, those P&G snacks are fortified with extra vitamin A and D to cancel out the leaching. 

But, because they’re not vitamins, fortification does not include carotenoids such as lycopene, which is hugely beneficial to prostate and heart health. According to FDA, eating Olestra products can significantly reduce carotenoids in the body.[3]   


1. Denniston KJ, Topping JJ, Caret RL. General, Organic, And Biochemistry, 5th ed. New York: McGraw Hill; 2007.
2. Cutting edge. “Fat Blockers”. Interactive Concepts of Biochemistry. Available at http://www.wiley.com/legacy/college/boyer/0470003790/cutting_edge/fat_blockers/fat_blockers.htm. Accessed on October 4, 2008.

3. Olestra and the FDA. NEJM. Volume 335:668-670.

Published by David Despain, MS, CFS

David is a science and health writer living on Long Island, New York. He's written for a variety of publications including Scientific American, Outside Online, the American Society for Nutrition's (ASN) Nutrition Notes Daily, and Institute of Food Technologists' (IFT) Food Technology magazine and Live! blog. He's also covered new findings reported at scientific meetings including Experimental Biology, AAAS, AOCS, CASW, Sigma Xi, IFT, and others on his personal blog "Evolving Health." David is also an active member of organizations including the National Association of Science Writers (NASW), the American Association for the Advancement of Science (AAAS), the American Society for Nutrition, the Institute of Food Technologists, and the National Audubon Society. David has a master's degree in human nutrition from the University of Bridgeport, and a bachelor's degree in English from University of Illinois at Springfield. He also earned his Certified Food Scientist credential from the Institute of Food Technologists.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: