Evolving Health

Monthly Archives: September 2009

Once the “war on cancer” was declared in 1971 by Congress, researchers have sought to defeat it (1), but after losses of many knights in shining armor, a newfound respect has come around for this dragon of a disease (1). In the 1990s and 2000s, however, a new sense of hope had come about. “End cancer by the year 2015” was the message shared in 2003 by Andrew C. von Eschenbach, MD,… Read More

I just read a citizen’s petition to FDA by Gail Elbek calling for the removal of soy because of antinutrients (trypsin inhibitors and phytates) and endocrine disruptors. Gave me a bit of a laugh, but I expect it will scare a lot of unwitting people. The outrageous claims Ms. Elbek makes are not grounded in any science. Soy phytotoxicity is going to “kill our children”? Please. I’m not about to throw out… Read More

Boron’s ability to induce sex hormone levels give it a role preventing chronic disease. For example, adequate dietary boron may potentially reduce risk of lung cancer (1). The effects also explain why boron supplementation may support bone density guarding against osteoporosis (2). However, caution should be exercised before supplementation with boron. Greater estrogen levels due to boron supplementation may potentially increase risk of breast cancer (1;2). Thus, boron should not be taken… Read More

Nickel is a known carcinogen. When in the diet in toxic amounts it contributes to oxidative stress, just as mercury and cadmium do, by reducing glutathione thereby interfering with cell membrane integrity and increasing lipid peroxidation (1). The oxidative damage, like from free iron or copper, can cause DNA damage (2). Reference List 1. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12:1161-208. 2. Tkeshelashvili LK,… Read More

As one travels around the world, especially in developing countries, the state of oral health stands out as an issue that needs attention. Fluoride treatment of drinking water can be an important step in improving oral health (1), but some populations may find it’s not necessary because they may already be consuming adequate or even too much fluoride daily.Careful review of fluoride exposure must be evaluated region by region before deciding to… Read More

A young electrician with a painful gouty arthritis in 2005 became the first case observed of occupational exposure of toxic amounts of molybdenum (1). Molybdenum is an activator of xanthine oxidase, which oxidizes xanthine producing uric acid (2). Too much produced hyperuricemia (1). The electrician can be thankful that his doctors found the cause of the gout because of previous men afflicted with gout by having consumed 10 to 15 mg of… Read More

Toxicity of manganese is more common than its deficiency (1), which unfortunately cause damage to the brain. Manganese appears to cause neurogeneration by activating microglia and causing them to release neurotoxins such as reactive oxygen and nitrogen species, which produce oxidative damage (2). The neurotoxins are also thought to possibly alter influence of neurotransmitters such as dopamine or gamma-aminobutyric acid (GABA) (1). According to a studies on non-human primates exposed to high… Read More

The biochemical mechanism by which metals are mutagenic is by their effects on DNA. The main pathway shared by iron, copper, chromium, vanadium and cobalt is by redox-cycling reactions and mercury, cadmium and nickel by depleting glutathione and bonding to sulfihydryl groups (1). Free iron, in particular, can cause oxidative damage on DNA that can cause cancer in the spleen (2). Arsenic, in particular binds directly to critical thiols producing DNA damage… Read More

Calcium (Ca) and magnesium (Mg) are non-heavy metals with the same valence charge that are both critical for physiologic function, yet overlap each other in their mechanisms. For example, they both use the same transport systems in kidney competing with each other for absorption. They also oppose one another in blood coagulation, smooth muscle contraction and PTH release. The relationship between Ca and Mg is important as it promotes a balance in… Read More

Vanadyl ions can act in an insulin-like manner in the body. Thus, when taken orally they may potentiate insulin’s effects, which can potentially improve situations of type 2 diabetes (1). Bioavailability of vanadyl compounds, however, can depend on whether of organic or inorganic nature (2). The organic bis-ligand oxovanadium appear to be far more bioavailable and efficacious than inorganic vanadyl sulfate (2). According to a couple of trials performed earlier this year… Read More