Designing biology

DNA
Photo credit: Sara Fulcher on Flickr

Where can we find a cure for cancer, new semiconductor technology, or the solution for turning waste plant materials into biofuels? The answer is enzymes that are produced through “directed evolution,” according to Frances H. Arnold, professor of chemical engineering and biochemistry at the California Institute of Technology.

Arnold’s lab doesn’t synthesize enzymes as other labs do. She and her team “evolve them” toward a certain desired goal in the same way that nature has done it for 3.5 billion years.

Aronold presented an overview of her budding field of work to an audience at American Association for the Advancement of Science annual meeting (#AAASmtg) in Washington DC. The field of directed evolution is relatively new and includes few people at the present time, but Arnold sees high hopes for the future.

“When I started engineering proteins a long time ago, there appeared to me an algorithm that dos a really good job and that’s evolution,” she said. “Evolution works because the regions that life has discovered and explored are rich in function. Directed evolution exploits smooth paths in the fitness landscape.”

The fact is, DNA is cheap and easy. Designing it isn’t.

“We’re getting really good at making DNA. The price is dropping every day,” Arnold said. “But we don’t know what to write. We can synthesize any sequence. We can insert new code (referring to Craig Venter’s recent success), but we don’t know how to write it. We don’t even know how to write a single protein.”

And, when it comes to enzymes for use inside a complex biological system, she says,”Details matter. We don’t understand the details.”

Freed from constraints of worrying about biological function, directed enzyme evolution allows Arnold’s team to explore new pathways and possibilities.

Arnold presented a few of her enzymes that have been created through directed evolution. Her source materials are from every possible place — the “heel of your shoe,” for example — and she doesn’t limit herself to what’s available.

Frances Arnold

By combining several different enzymes and selecting for specific active sites, she can produce more stable proteins that perform practical work.

Where is directed enzyme evolution going in the future? Arnold says that functional protein can be used in several ways. One example Arnold gives is in materials chemistry, such as the work of Angela Belcher of MIT, who uses virus proteins to enrobe minerals onto protein coats.

“You can make a virus that really loves to bind to a single-walled carbon nanogen,” Arnold said, which would be a boon for semiconductor technology.

There is really no end to the influence that directed enzyme evolution could have on the world, from highly specific targeting in biological systems to technology.

In short, there’s no doubt of an exciting future in intelligently designing new biology.

Published by David Despain, MS, CFS

David is a science and health writer living on Long Island, New York. He's written for a variety of publications including Scientific American, Outside Online, the American Society for Nutrition's (ASN) Nutrition Notes Daily, and Institute of Food Technologists' (IFT) Food Technology magazine and Live! blog. He's also covered new findings reported at scientific meetings including Experimental Biology, AAAS, AOCS, CASW, Sigma Xi, IFT, and others on his personal blog "Evolving Health." David is also an active member of organizations including the National Association of Science Writers (NASW), the American Association for the Advancement of Science (AAAS), the American Society for Nutrition, the Institute of Food Technologists, and the National Audubon Society. David has a master's degree in human nutrition from the University of Bridgeport, and a bachelor's degree in English from University of Illinois at Springfield. He also earned his Certified Food Scientist credential from the Institute of Food Technologists.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: